
Background Subtraction and Foreground Detection based on

Codebook Model with Kalman Filter

Su Su Aung, Zin Mar Kyu

University of Computer Studies, Mandalay, Myanmar

susuaung87@gmail.com , zinmarkyu.pp@gmail.com

Abstract

 Foreground object extraction is an important

subject for computer vision applications. The

separation of foreground objects form the

background is the crucial step in application

such as video surveillance. In order to extract

foreground object from a video scene, a

background model which can represent dynamic

changes in the scene is required. A robust,

accurate and high performance approach is still

a great challenge today. In this paper, the

background modeling approach based on

Codebook model with Kalman Filter is

presented. This approach can be used to extract

foreground objects from the video stream. The

Lab color space is used in this approach to

calculate color difference between two pixels

using CIEDE2000 color difference formula.

Extracted foreground object from video sequence

using this approach is useful for object detection

in video surveillance applications.

1. Introduction

 In these days, the number of video-based

surveillance systems is increasing due to its use

in several applications, such as vision based

traffic system, video segmentation or human

behavior analysis. Most methods for video based

surveillance rely on moving object detection [2].

Videos are actually sequences of images, each of

which called a frame, displayed in fast enough

frequency so that human eyes can percept the

continuity of its content. The contents of two

consecutive frames are usually closely related.

Visual content can be modeled as a hierarchy of

abstractions. At the first level are the raw pixels

with color or brightness information. Further

processing yields features such as edges, corners,

lines, curves, and color regions. A higher

abstraction layer may combine and interpret

these features as objects and their attributes [10].

As a fundamental first step in many computer

vision applications such as object tracking,

behavior understanding, object or event

recognition, and automated video surveillance,

various algorithms have been developed ranging

from simple approaches to more sophisticated

ones. The first step in most of the automated

surveillance application and video analysis is

background subtraction. Background modeling,

subtraction and estimations are the widely used

techniques to extract foreground objects from

background. However, there is still an issue

according to inconsistent performance of method

across different scenarios. Video sequences

captured by fixed cameras contain moving

objects on a fixed background. Real time

segmentation of scene into objects and

background is really important and represents an

initial step of object tracking. The simplest way

to model the background is to acquire

background image without containing the

moving objects in it. But in most of the

circumstances, it is difficult to obtain the

background because of the changes in the

environment such as illumination changes and

objects being introduced or removed from the

scene. So background model must be more

robust and adaptive. There are various

background modeling approaches including

Basic Background Modeling, Statistical

Background Modeling, Fuzzy Background

Modeling, Background Estimation and

Prediction, Recursion, Adaptation, Modality

[11].

 In general, it is assumed that pixels belonging

to foreground objects have different color values

than background. Background modeling

techniques model the background using previous

frames history. Every image pixel is matched

with its background model. If pixel color value

is similar to the background model, then it is

considered as background model otherwise it is

an object pixel.

2. Codebook Background Modeling

 The traditional codebook background

modeling algorithm was proposed by [4] which

were inspired by the algorithm presented in

[Kohonen, 1988]. It is a quantization technique

using long scene observation for each pixel. Each

pixel was represented by one or more codeword

and the number of codeword for a pixel is varies

due to its background variation. Let χ be training

sequences for a single pixel. Each codeword �� ,

where L = 1...χ is represented by a RGB vector

�� = (��,�̅,��) and a six-tuples ���� =

〈��
� , ��,� ��, ��, ��, ��〉 . Where ��

�= min〈�, ��
�〉 and ��

�

= max 〈�, ��
�〉are the minimum and the maximum

brightness assigned to the codeword respectively.

�� is the frequency or the number of times that

codeword is matched. �� is the maximum

negative run length, meaning the largest time

span in which this codeword is not updated or

accessed. �� and �� are the first and the last

access times of the codeword respectively.

Algorithm for codebook construction [5].

Input: Stream of pixel values (R, G, B)

Output: M (codebook)

Initialize L ← 0 and M ← ∅

for t = 1 to N do

 �� ← (R, G, B), I ← √�� + �� + ��.

 Find the codeword cm in C matching to ��

 using Eq. (1), (3) and (4)

 if colordist(�� , ��≤ �� AND

 brightness (I, 〈��, ��〉) = true then

Update the codeword cm as follows:

 �� ← �
�� �������� �

�� ��
 ,

�� �������� �

�� ��
,

�� �������� �

�� ��
 �

���� ← 〈min��, ��� �, max��, ��� �, �� +

1, max{�� , �− �� }, �� , � 〉

 end

 else if M = ∅ or there is no match

 then Increment L and create a new codeword

 �� = (��,����) by setting,

 �� ← (R, G, B) and ���� ← 〈�, �, 1, �−

 1, �, �〉

 Add �� in M.

 end

end

foreach Codeword �� in M do

 �� ← max {λi, (N − �� + �� − 1)}

end

2.1. Color and brightness distortion

 When we have an input pixel �� = (R, G, B)

and a codeword �� where �� = (��
� ,��

� , ��
�),

‖��‖� = R2 + G2 + B2,

‖��‖� = ��
� �

+��
� �

+ ��
� �

,

〈��, ��〉� = (��
� � + ��

� � + ��
� �) 2

The color distortion is computed as follows:

colorDistortion(��, ��)=δ=� ‖��‖� – �� (1)

where �� is calculated as follows :

�� = ‖��‖� ���� � =
〈��,��〉�

‖��‖� (2)

 On the other hand, the brightness range

(���� , ���) is calculated using the min (��) and the

max (��) as follows:

���� = ��� , ��� = min (β��,
��

�
), (3)

 Where α and β are the factors used to extend

the brightness bound to changes due to the

illumination changes. By maintaining ���� and

 ��� values in the codebook, local illumination

changes such as shadow and highlight can be

detected. ���� and ��� values can be updated

throughout the training period to cover a certain

range of brightness variation.

Figure 1. Cylinder color model of Codebook

algorithm

 The technique alone however cannot be

sufficiently used to filter a wide range of code-

words in codebooks. Moreover, moving a

codeword into a codebook merely on the basis of

minimum and maximum intensity comparison is

not sufficient to identify foreground pixels from

background pixels especially when both assume

similar color information in addition to similar

intensity values [9].

3. Improved Codebook with Lab color

model and Kalman Filter

 In this proposed method, the background is

modeled by codebook algorithm. But the

performance of traditional codebook algorithm is

highly depend on the cylinder color model which

is valid only if the spectrum components of the

light source change in the same proportion. In

fact, this is not true in many practical cases. [9].

So we use Lab color model instead of RGB color

model and compute the color distortion between

two pixels values using CIEDE2000 color

difference formula. Kalman Filter is used to

estimate intensity value of each pixel in order to

track brightness variation throughout the

sequence.

3.1. Lab color model

 Lab color space is a color-opponent space

with dimension L for lightness and a and b for

the color-opponent dimensions, based on

nonlinearly compressed coordinates [12]. Unlike

the RGB and CMYK color models, Lab color is

designed to approximate human vision. The Lab

color space encompasses all the colors that

human eye can see, which means that its gamut

exceeds those of the RGB and CMYK color

models. One of the most important attributes of

the Lab model is device independence. This

means that the colors are defined independent of

their nature of creation or the device they are

displayed on. Lab is also extremely useful for

translating color from one real world condition to

another.

Figure 2. Lab color space[13]

 In Lab color space, the vertical L axis

represents Lightness, ranging from 0-100. The

other (horizontal) axes are now represented by a

and b. These are at right angles to each other and

cross each other in the centre, which is neutral

(grey, black or white). They are based on the

principal that a color cannot be both red and

green, or blue and yellow. The a axis is green at

one extremity (represented by -a), and red at the

other (+a). The b axis has blue at one end (-b),

and yellow (+b) at the other.

3.1.1. CIEDE2000 Color-difference Formula

 The CIEDE2000 color-difference formula [1]

was developed members of CIE (Commission

Internationale de l'Eclairage which in English is

the International Commission on Illumination)

Technical Committee. The formula provides an

improved procedure for the computation of

industrial color differences. The color difference

deltaE (∆E) is generally used for the color

difference evaluation with CIE Lab color space.

The CIEDE2000 formula is considerably more

sophisticated and computationally involved than

its predecessor color difference equations for

CIE76 and the CIE94 color difference.

 The color difference between two Lab color

values, Lab1 and Lab2 can be denoted as follow:

Δ���(����, ����) = Δ���
�� = Δ��� (4)

 There are three main steps in computing of

the color difference given two Lab color values

and parametric weighting factors kL, kC and kH.

Δ���= � �
∆��

����
�

�

+ �
∆��

��� ��
�

�

+ �
∆� �

�� ��
�

�

+ ��
∆��

��� ��

∆� �

�� ��

First step is to calculate ��
� , ℎ�

�

 ��,��
∗ = �(��

∗)� + (��
∗)� (5)

 ��̅�
∗ =

��,��
∗ ���,��

∗

�
 (6)

 G = 0.5�1 − �
�̅

��
∗�

�̅
��
∗� ����� (7)

 ��
� = (1 + �)��

∗ i =1, 2 (8)

 ��
� = �(��

�)� + (��
∗)� i =1, 2 (9)

ℎ�
� = �

0 ��
∗ = ��

� = 0

�����(��
∗, ��

�) ��ℎ������
� i =1, 2 (10)

Second step is to calculate Δ��, Δ��, Δ��

 Δ�� = ��
∗ − ��

∗ (11)

 Δ�� = ��
� − ��

� (12)

 0 ��
���

� = 0

 ℎ�
� − ℎ�

� ��
���

� ≠ 0; |ℎ�
� − ℎ�

� | ≤ 180°

Δℎ� = (ℎ�
� − ℎ�

�)-360 ��
���

� ≠ 0; |ℎ�
� − ℎ�

� | > 180°

 (ℎ�
� − ℎ�

�) +360 ��
���

� ≠ 0; |ℎ�
� − ℎ�

� | < − 180°

 (13)

 Δ�� = 2 ��1
′ �2

′ ����
���

�
� (14)

Third step is the calculation of deltaE (Δ���)

 ��� = (��
∗ + ��

∗) 2⁄ (15)

 �̅� = (��
� + ��

�) 2⁄ (16)

��

� � ��
�

�
 |ℎ2

′ − ℎ1
′ | ≤ 180°; �1

′ �2
′ ≠ 0

��

� � ��
� �360°

�
 |ℎ�

� − ℎ�
� | > 180°; (ℎ�

� + ℎ�
�)< 360°;

ℎ�
� = ��

���
� ≠ 0

��

� � ��
� �360°

�
 |ℎ2

′ − ℎ1
′ | > 180°;

 (ℎ�
� + ℎ�

�)≥ 360° ;��
���

� ≠ 0

 (ℎ�
� + ℎ�

�) ��
���

� = 0

 (17)

T = 1 − 0.17cos�ℎ�′
− 30°� + 0,24 cos�2ℎ�′� +

 0.32 cos�3ℎ�′
+ 6°� − 0.20 cos�4ℎ�′

− 63°�

 (18)

 ∆� = 30 ����− �
ℎ�′

− 275°

��
�� (19)

 �� = 2�
�̅��

�̅������ (20)

 �� = 1+
�.���(������)�

����(������)�
 (21)

 �� = 1 + 0.045�̅� (22)

 �� = 1 + 0.015�̅�� (23)

 �� = − sin (2∆�)�� (24)

 If the deltaE (Δ���) value between current

pixel’s Lab value and Lab value stored in

Codeword is greater than the threshold (��), then

the current pixel is belong to the foreground

object. This method show more accurate

foreground-background segmentation result

compare with the traditional codebook which use

color distance formula.

3.1.2. Kalman Filter Intensity Estimation

 The Kalman filter is essentially a set of

mathematical equations that implement a

predictor-corrector type estimator that is optimal

in the sense that it minimizes the estimated error

covariance when some presumed conditions are

met. Since the time of its introduction, the

Kalman filter has been the subject of extensive

research and application, particularly in the area

of autonomous or assisted navigation. This is

likely due in large part to advances in digital

computing that made the use of the filter

practical, but also to the relative simplicity and

robust nature of the filter itself. Rarely do the

conditions necessary for optimality actually

exist, and yet the filter apparently works well for

many applications in spite of this situation [6].

 Kalman filter can be used in any place where

there is uncertain information about some

dynamic system, and can make an accurate

estimation about what the system is going be

next. There are five steps in Kalman filter

equation [3] including state prediction, error

prediction, kalman gain, state correction, and

error correction. The following parameters are

needed to define in order to perform Kalman

filter estimation:

 ���
� = ������

� + ��� (25)

 ��
� = ������� + � (26)

 �� = ��
���(���

��� + �)�� (27)

 ��� = ���
� + ��(�� − ����

�) (28)

 �� = (� − ���)��
� (29)

Where,

A matrix relates the state at the previous

time step to the state at the current step.

B matrix relates the optional control input to

the state.

Q represents the process noise covariance

matrix.

H matrix relates the state to the

measurement.

R represents the measurement noise

covariance matrix.

x is the state variable with k being the

current and k-1 being the prior.

u is the control variable with k being the

current.

z is the measurement with k being the

current.

 In the proposed method, we estimate the

intensity value of each pixel from its previous

value and compare the estimated result with

actual measure intensity. Kalman filter is applied

on each pixel to track pixel intensity through the

video sequence. In the background modeling

process, the prediction-correction result from

kalman filter is stored in Codeword of each

pixel. After background modeling, kalman filter

estimate intensity value of each pixel and pixels

with high intensity variances are segmented to

the foreground.

Figure 3. Estimated and measured intensity
values of one pixel through video sequences

 In the estimation process, the measurement

noise is calculated by the Noise Level Estimation

method proposed in [7]. Kalman filter can solve

the problem of traditional Codebook algorithm

which is caused by minimum and maximum

brightness range in cylinder color model.

4. Experimental Results

(a)

(b)

(c)

(d)

Figure 4. Background Subtraction result on
PETS dataset by (b) Traditional Codebook
Algorithm (c) Proposed Method (d) Ground

Truth

 The proposed method is tested on PETS
dataset. The experimental background
subtraction and foreground segmentation results

show that the proposed method can produce
more accurate results compare with the
traditional codebook algorithm.

5. Conclusion

 In this paper, we proposed robust background

modeling and foreground detection method using

improved Codebook model with Kalman filter.

In background modeling, we use CIEDE2000

color difference formula to calculate color

deviation between two pixels. Kalman filter

estimation is also used to estimate pixel intensity

and foreground pixels are extracted by

comparing estimated and measured intensity

values. This method can provide better

foreground segmentation result which can be

used in object detection applications.

References

[1] G. Sharma, Wencheng Wu and Edul N. Dalal,

“The CIEDE2000 Color-Difference Formula:

Implementation Notes, Supplementary Test Data, and

Mathematical Observations”, 19th IEEE International

Conference on Image Processing (ICIP), 2012

[2] J. Kim, A. Ramirez Rivera, B. Ryu and O. Chae,

“Simultaneous foreground detection and classification

with hybrid features”, conference on International

Computer Vision (ICCV), December 13-16, 2015.

[3] J. Scott, M. A. Pusateri and D. Cornish, “Kalman

Filter Based Video Background Estimation”, in the

proceeding on Applied Imagery Pattern Recognition

Workshop (AIPRW), 2009 IEEE 14-16 Oct. 2009.

[4] K. Kim, T. H. Chalidabhongse, D.Harwood and L.

Davis, “Real-time foreground – background

segmentation using codebook model”, in Conference

on Visual Communication and Image Processing

2005.

[5] M. Shah, J. D. Deng, B. J. Woodford, “Self-

Adaptive CodeBook (SACB) model for real-time

background subtraction”, Journal of Image and Vision

Computing, October 3, 2013.

[6] R. E. Kalman, “A New Approach to Linear

Filtering and Prediction Problems”, Journal of Basic

Engineering, 1960, pp 35-45.

[7] X. Liu, M. Tanaka and M. Okutomi, “Noise Level

Estimation Using Weak Textured Patches of a Single

Noisy Image”, 19th IEEE International Conference on

Image Processing (ICIP), September 2012.

[8] Y. A. Syed, S. Shetty, N. Wilkinson, and D. J.

Brown, “A Modified Codebook-based Background

Subtraction Technique to improve Activity

Classification in Highly Variable Environments”, STS

Defense Ltd and University of Portsmouth, 2012.

[9] Z. Zeng and J. Jia, “Arbitrary cylinder color model

for the codebook based background subtraction”,

Optical Society of America (OSA), September 2014.

[10] Z. Guo, “Object Detection and Tracking in

Video”, Journal of Advances in Internet based

Systems and Application, November 2001.

[11] T. Bouwmans, “Recent Advanced Statistical

Background Modeling for Foreground Detection -

A Systematic Survey”, Recent Patents on Computer

Science, September 2011.

[12] https://en.wikipedia.org/wiki/Lab_color_space

[13]http://t3.gstatic.com/images?q=tbn:

ANd9GcSPlYkqiL_XiYV5WcEM1owcFT9A0iYbKA

bR7OlutLJjsb6H1W6oZQ

